Math
Sets
Functions

Functions on Sets

f:Aβˆ’>B,xβˆ’>f(x)f: A-> B, x -> f(x)
A=A = Domain
B=B = Codomain

Image

For CβŠ‚A,f(C):={y∈Bβˆ£βˆƒx∈C:f(x)=y}C \subset A, f(C) := \{y \in B \mid \exists x \in C: f(x) = y \} is called the image of CC under ff

Pre-image

For DβŠ‚B,fβˆ’1(D):={x∈A∣f(x)∈D}D \subset B, f^{-1}(D) := \{x \in A | f(x) \in D \} is called the pre-image of DD under ff

Mapping Properties

Let f:Aβˆ’>Bf: A-> B be a function between non-empty sets. Then ff is called:

  1. injective if βˆ€x1,x2∈A,x1β‰ x2\forall x_1, x_2 \in A, x_1 \neq x_2 (every y value has only one x value)
  2. surjective if βˆ€y∈Bβˆƒx∈A:f(x)=y\forall y \in B \exists x \in A: f(x)=y (all y values can be reaced by a certain x value)
  3. bijective: both